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Abstract

We develop a tractable model of foreign portfolio inflows into emerging-market local-
currency assets when exchange-rate crash risk is endogenous to positioning. A represen-
tative investor funds a carry trade at a global rate and chooses the inflow position under
mean—variance preferences. The exchange rate features normal shocks and a crash jump
whose probability rises with inflows. Under a rare-crash approximation, the investor’s
objective is quartic in the position and the first-order condition is cubic, delivering closed-
form characterization and conditions for uniqueness. When carry amplification dominates
locally but fragility dominates globally, non-concavity generates multiple stationary points
and sudden-stop—type regime switching. We study the policy instrument—a wedge on
foreigners’ after-cost return—and show how they reduce inflows, dampen tail risk, and can
eliminate multiplicity.
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1 Introduction

In the upswing of a global financial cycle, the trade that channels money into emerging markets
(EMs) can look almost dull. A leveraged investor borrows cheaply in a major funding currency,
buys a local-currency bond in an EM, and counts on the carry—the interest differential—plus
a stable or appreciating exchange rate. For long stretches, nothing dramatic happens. Then,
seemingly all at once, the same positions are cut, the exchange rate jumps, and what looked like
a steady yield pick-up is revealed to be a strategy that earns small gains while occasionally losing
big. This pattern—procyclical inflows in good global times and abrupt reversals when global
conditions tighten—is by now a familiar description of portfolio flows and exchange-rate risk
in EMs (Rey 2015, Miranda-Agrippino and Rey 2020, Forbes and Warnock 2012, Fratzscher
2012).

A central feature of this environment is that the “global financial cycle” is not just about the level
of world interest rates. It is also about intermediaries’ risk appetite, balance-sheet capacity, and
the price of bearing risk (Bruno and Shin 2015, Adrian and Shin 2010). When global funding
is easy and measured risk is low, cross-border balance sheets expand and gross capital flows
surge; when funding tightens or risk appetite evaporates, the same balance sheets shrink and
flows retrench (Broner et al. 2013, Forbes and Warnock 2012). Empirically, common “push”
forces—global liquidity and global risk—explain a large share of the high-frequency variation
in portfolio flows (Fratzscher 2012, Ahmed and Zlate 2014). In that sense, the question for an
EM is rarely whether it will be exposed to global shocks, but rather how that exposure maps into

domestic asset prices, currency risk, and (crucially) the probability of disruptive tail events.

This paper offers a deliberately stripped-down theoretical framework for thinking about that
mapping. The model is built for transparency: it keeps the basic carry-trade arithmetic but
adds one element that is often discussed informally and modeled less often in closed form—
that tail risk is endogenous. The key mechanism is simple. When foreign portfolio inflows
become large, they can compress risk premia and support the currency in the short run, yet
simultaneously increase fragility (for example, by encouraging leverage, maturity mismatch,
crowded positioning, or procyclical risk-taking). As aresult, the probability of a sharp exchange-
rate crash can rise with the scale of inflows. In short, the same force that makes the trade look

attractive in tranquil periods can also plant the seeds of a crash when conditions reverse.

To formalize this idea, we consider a two-period environment in which a representative foreign
investor chooses an inflow position in a local-currency EM security. The investor finances the
position at a global funding rate and faces mean—variance preferences in the spirit of the classical
portfolio problem (Markowitz 1952). The novelty is in the exchange-rate process. Specifically,

the gross exchange-rate change has a normal component and a crash jump, and the crash



probability is an increasing function of the inflow position. This yields two sharp implications.
First, because crash risk rises convexly with inflows, the investor’s objective becomes a quartic
polynomial in position size and the first-order condition is cubic. Second, the model naturally
delivers regime-like behavior: for parameter values in which “carry amplification” dominates
locally but fragility dominates globally, the objective can become non-concave, opening the
door to multiple candidate inflow levels and discontinuous switches between high-inflow and
low-inflow outcomes. This is a parsimonious way to generate “sudden stops” as a change in
the location of the global maximizer rather than as an imposed occasionally binding constraint
(Calvo 1998, Bianchi 2011).

The setup speaks to several strands of the international finance literature. A first strand documents
the global financial cycle and its consequences for monetary autonomy and cross-border leverage
(Rey 2015, Miranda-Agrippino and Rey 2020, Bruno and Shin 2015). A second strand studies the
macroeconomics of capital-flow bonanzas, stops, and crises (Calvo 1998, Forbes and Warnock
2012, Gourinchas and Obstfeld 2012, Broner et al. 2013). A third strand focuses on currency
carry trades and the empirical fact that carry returns are exposed to crash risk and negative
skewness (Brunnermeier et al. 2009, Menkhoff et al. 2012, Jurek 2014, Burnside et al. 2011,
Lustig et al. 2011). Finally, a growing policy literature asks when and how macroprudential
tools or capital flow management measures can reduce the buildup of systemic risk (Ostry et al.
2010, 2012, Korinek 2011, Jeanne and Korinek 2010, Farhi and Werning 2014, 2016, Bianchi
and Mendoza 2018, Magud et al. 2018).

The model is closest in spirit to theories that emphasize the interaction between leveraged
balance sheets and asset prices. Funding conditions affect risk-taking, and risk-taking feeds
back into prices and risk premia (Adrian and Shin 2010, Brunnermeier and Pedersen 2009,
Geanakoplos 2010). In exchange-rate markets, limited risk-bearing capacity implies that capital
flows can move exchange rates and risk premia. The present framework takes these insights
and embeds them in a minimal carry-trade environment with one additional object: an explicit,
position-dependent crash probability. This is also consistent with disaster-risk approaches that
explain high premia with a small probability of large adverse outcomes (Barro 2006, Gourio
2012). Here, however, the disaster probability is not merely a state variable: it is partly a

function of the position chosen in equilibrium.

Three empirical regularities motivate the modeling choices. First, gross inflows to EMs are
large, volatile, and strongly procyclical, with sharp retrenchments during crises (Broner et al.
2013, Forbes and Warnock 2012). Second, global “push” forces—notably global risk and
liquidity—are central for explaining the time variation in flows (Fratzscher 2012, Ahmed and
Zlate 2014, Miranda-Agrippino and Rey 2020). Third, currency carry strategies earn premia
that are difficult to reconcile with uncovered interest parity, and a prominent explanation is

compensation for crash risk or tail events (Brunnermeier et al. 2009, Menkhoff et al. 2012, Jurek



2014, Farhi et al. 2009). The literature has emphasized different facets of this last point: some
argue that large negative payoffs occur in bad times when marginal utility is high (Lustig et al.
2011); others emphasize that hedging crash events can explain a nontrivial share of carry premia
(Jurek 2014); and still others debate the extent to which peso events are best interpreted as rare
disasters versus rare states with high stochastic discount factors (Burnside et al. 2011). Rather
than take a stand on the full asset-pricing decomposition, this paper isolates one mechanism that
is plausible in many interpretations. In particular, crash risk rises when positioning becomes

crowded.

On the policy side, there is a clear tension. On one hand, open capital accounts can support
financial development and allow risk sharing; on the other, inflow booms can amplify leverage
cycles and increase the likelihood of costly crises (Gourinchas and Obstfeld 2012). A large body
of work rationalizes prudential capital controls or macroprudential regulation as Pigouvian tools
that internalize crisis externalities (Jeanne and Korinek 2010, Korinek 2011, Bianchi 2011,
Bianchi and Mendoza 2018). From a practical perspective, policy discussions often distinguish
between broad capital controls, targeted inflow taxes, and prudential tools that operate through
margins, reserve requirements, or leverage constraints (Ostry et al. 2010, 2012, Magud et al.
2018). The model here contributes to this debate by offering a simple environment where a
reduced-form wedge on foreigners’ after-cost return affects not only the level of inflows but also

the slope of inflows with respect to global conditions and the implied tail probability.

This paper makes three important contributions. First, it introduces a tractable mechanism that
links global-cycle-driven inflows to endogenous foreign exchange (FX) crash tail risk. Crash
probability is increasing in the inflow position, so tail risk is not an exogenous ‘“‘state of the
world” but a function of equilibrium portfolio choice. This delivers a clean elasticity of tail
probability with respect to inflows: when the endogenous component dominates baseline risk,
tail probability scales approximately with the square of inflows, and the associated log—log

elasticity approaches two.

Second, the paper provides a fully explicit characterization of the investor’s problem and equi-
librium inflows. With mean—variance preferences and rare-crash approximation, the objective
becomes a quartic polynomial in the inflow position and the first-order condition is cubic. This
yields closed-form expressions for candidate inflow levels and transparent conditions under
which the solution is unique. When those conditions fail, the same closed-form structure clar-
ifies how non-concavity can produce multiple candidate inflow “regimes” and discontinuous
switches between them, offering a simple analytical notion of sudden stops without imposing

an occasionally binding collateral constraint.

Third, the present paper clarifies how macroprudential policy can shape both the level of

inflows and the buildup of tail risk. A reduced-form wedge that lowers foreigners’ after-cost



return (interpretable as a tax, reserve requirement, or regulatory wedge) reduces equilibrium
inflows and therefore reduces endogenous crash probability. Moreover, by damping the carry-
amplification channel, the wedge can restore global concavity and eliminate multiplicity, thereby
removing a specific source of discontinuous regime switching. An equivalent conclusion holds
for a VaR-style margin constraint: tighter margins cap the position size precisely in the region

where endogenous jump risk makes the variance steep in inflows.

Section 2 presents the setup and the exchange-rate process with endogenous crash probability.
More specifically, we first derives the investor’s objective, proves existence and uniqueness
results, and provides the closed-form characterization of equilibrium inflows. Then, we discusses
the risk-premium analogue, tail risk elasticity, and the amplification mechanism. Finally, we
analyzes the effects of macroprudential wedges and margin-style tools and records comparative

statics with respect to the global financial cycle. Section 3 concludes.

2 Model

2.1 Setup

Time is t € {0,1}. There is a representative foreign investor (the marginal buyer) and an
emerging-market (EM) local-currency security. Throughout, variables are expressed in gross

form.

Let e; > 0 denote the spot exchange rate defined as foreign currency per one unit of EM currency.

Hence an increase in e is an EM currency appreciation from the foreign investor’s point of view.

A scalar global state g € (0, 1] summarizes the global financial cycle. Higher g means easier
global conditions (lower funding frictions and higher effective risk tolerance). The global state
affects: 1) the foreign funding gross rate R*(g) > 1; ii) the investor’s mean—variance risk-
aversion coefficient A(g) > 0; iii) the baseline volatility of normal-times currency fluctuations
0¢(g) > 0; and iv) the baseline crash probability 7(g) € (0, 1). To keep the comparative statics

transparent, we impose sign restrictions later.

At t = 0 the foreign investor allocates an amount F > 0 (in foreign currency units) into a
local-currency security with gross local-currency return R > 1 betweent = O and # = 1. This R
can be interpreted as the gross return on a one-period EM local-currency bond or a broad EM

LC security index.!

'Keeping R as a primitive matches the logic: the core object is the foreign-currency excess payoff that combines
the local return and the exchange-rate change. One may endogenize R or the bond price; Section ?? sketches a
pricing extension.



The foreign investor funds F at the global gross rate R*(g). A host-country macroprudential

wedge 7 € [0, 1) acts like a tax on the local return component received by foreigners.”

The foreign-currency net excess payoff (relative to funding) from the EM investment is:

e K
K = F|(1-1)2R - R*(9)| - =F~ (1

eo 2
where e;/eq is the gross currency appreciation factor (foreign per EM); « > 0 is a convex
“balance-sheet” or price-impact cost (captures limited depth, intermediation cost, or internal

leverage penalties).

2.2 Normal times vs. crash times, and endogenous fragility

The key is that the exchange-rate change contains both a normal innovation and a crash jump

whose probability depends on inflows. Specifically,

€1
— = 1+u.(g) +xF+e - Jlcoy, (2)
€0 ~——

normal component crash jump

where u.(g) € R is baseline expected appreciation (higher means expected EM appreciation);
X = 0 captures a portfolio-balance channel: larger inflows tilt demand toward EM currency
and raise expected appreciation (imperfect sterilization, slow-moving arbitrage, etc.); € is a
normal-times shock with E[g] = 0 and V(&) = 02(g); and C € {0, 1} is a crash indicator. If

C = 1, the EM currency suffers a discrete depreciation of size J > 0 in gross terms.>

The crash probability is endogenous:
P(C=1|F.g) = n(F.g) = @(g) + nF?, 3)

with 7 > 0 measuring fragility: larger inflows raise the likelihood of an FX crash (think currency
mismatch, fragile funding, crowded carry, or procyclical dealer balance sheets). The quadratic
form is chosen for tractability; it is the simplest smooth specification that generates strong

non-linearities.

Assumption 1 (Feasible crash probability). There exists F > 0 such that the equilibrium inflow
satisfies F € [0, F] and n(F, g) € (0, 1) for all (F,g) in this set.

Remark 1. Assumption 1 is mild. Since 7(F,g) = 7(g) + nF?, one can pick F such that
nF* < 1—sup, 71(g).

This wedge is deliberately reduced-form. It can capture a tax on foreign holdings, an unremunerated reserve
requirement, or a regulatory wedge that lowers the effective after-cost return to foreign intermediaries.
3Because e is foreign per EM, a crash means e /e falls; hence the subtraction in Equation (2).



2.3 Investor problem: mean-variance with endogenous tail risk

The foreign investor is mean—variance. Let 8 > 0 be a taste shifter on expected payoff (a “mean

weight”) and let A(g) > 0 be risk aversion. The investor chooses F' > 0 to maximize:

U(Fig.) = OBIKIF.gl - “Ev(k|F.g) @

where 6 measures how aggressively the investor trades off mean vs. risk (higher 6 increases
desired exposure); and A(g) is risk aversion (higher A reduces desired exposure); it moves with

global conditions.

Define the random per-unit excess return in foreign currency:
X = (1-0%R - R (9). (5)
€o
Then K = FX — %Fz. Conditional on (F, g),
K2 2 2

]E[K] :FIUX(Fag7T) - EF ’ V(K):F O-X(F’g’T)a (6)
where uy = E[X] and 0')2( =V(X).
Using Equations (2)—(3), and the independence of £ and C, we compute:

px(F,g,7) = (1 =7)R (1 + pe(g) + xF —Jn(F, g)) — R*(g), (7)
O')Z((F,g,r) =(1 —‘1')2R2 (o'gz(g) + J27T(F,g)(1 —n(F,g))) . (8)

The term J(F, g) in Equation (7) is a crash-expected-loss adjustment: higher crash probability

lowers expected carry. The term J2(1— ) in Equation (8) is the jump contribution to variance.

For closed-form characterization, it is convenient to work with the standard “rare crash” approx-

imation:

Assumption 2 (Rare crash approximation). In the relevant equilibrium region, n(F, g) is small

enough that 1 — n(F, g) =~ 1 in the second-order term of Equation (8). Hence,
CHF.8.7) ~ (1-7)°R? (02(9) + /*n(F.g)) . ©)

Remark 2. Assumption 2 is an approximation that preserves the qualitative economics while
yielding a polynomial objective. One can drop it and keep 7 (1 — 7r); the proofs go through with
heavier algebra (the degree of the polynomial increases).



2.4 Reduced-form quartic objective and a cubic first-order condition

Substituting (6) into Equation (4) yields

U(F:.7) = 6 (F,uX(F,g, 7) - ng) _ @F%}%(F,g, 7). (10)

Under Assumption 2 and 7(F, g) = 7(g) + nF?, define the following convenient coefficients:

A(g, 1) = (1 -7)R (1 + pe(g) —J7(g)) — R*(g), (1)
B(r)=(1-1)Rx, (12)
C(g,T)=(1-1)RJn, (13)
S(8:7) = (1= 712K (02(g) + 7 (8) ). (14)
D(7) = (1-1)*R* . (15)

where A is baseline expected excess carry (net of baseline crash losses); B is the strength of
inflow-driven expected appreciation; C is the marginal expected crash loss induced by inflows;
S is baseline variance; and D is how strongly inflows raise variance via endogenous crash

probability.
Using Equations (11)—(15), the mean and variance simplify to:

px(F,g,7) = A(g.7) + B(1)F - C(g, T)F%,  o%(F,g.1)=S(g.7) + D(1)F*.  (16)
Substitute (16) into Equation (10) to obtain a quartic polynomial in F:*

ﬁlﬂ

U(F:g.7) =6 (AF + BF? = CF* = F?) - =

. (S + DFZ) . 17)

Differentiating Equation (17) yields the first-order condition:
Ur(F;g,7) = 6 (A + (2B - K)F - 3CF2) ~ A(g) (SF + 2DF3) - 0. (18)

This is a cubic equation in F.

“Here and below, (g, 7) arguments of A, C, S are omitted when unambiguous.



2.5 Existence, uniqueness, and closed-form characterization

Lemma 1 (Concavity for large F' and existence of an optimum). Suppose D(t) > 0 and
A(g) > 0. Then limp_,oo U(F;g,T) = —co. Moreover, if A(g,T) > 0, there exists at least one
optimal inflow level F*(g, 1) € (0, o) satisfying Equation (47).

Proof. Part 1: Limit behavior (coercivity): We examine the asymptotic behavior of U(F) as
F — oco. Let us expand the terms in Equation (1) and group them by powers of F. The term

with the highest degree determines the limit.

Expanding the expression:

AS

AD
U(F) = 6AF +0 (B - g) F?—6CF - 2 F -
AD S
=P - 0CF + 9(3—%) —7] F2 + 0AF

The polynomial is of degree 4. Since A > 0 and D > 0, the coefficient of the leading term F* is
strictly negative:
AD

“Z <0
2

Therefore, the tail behavior is dominated by this negative quartic term:

lim U(F) = —o0

F—oo

This proves the first part of the lemma. Intuitively, as the position size F' grows, the variance of
the position (which scales with F* due to the endogenous crash probability) grows faster than the
expected return (which scales at most with F2 or F?). The risk penalty eventually overwhelms

any expected gain.

Part 2: Existence of an interior optimum: We seek to maximize U (F) on the domain F € [0, c0).

1. Continuity: U(F) is a polynomial, so it is continuous and differentiable everywhere.

2. Boundary at infinity: From Part 1, we know limp_,o, U(F) = —oco. This implies that
there exists some large number F such that for all F > F, U(F) < 0.

3. Value at zero: Evaluating the objective at F' = O:

U(0) =0



4. Behavior near zero: We analyze the derivative U’(F) at F = 0. Differentiating U (F):
U'(F) =60(A+ (2B — k)F —3CF?) — A(SF + 2DF?)

Evaluating at F = 0:
U'(0)=0(A+0-0)—1(0) =0A

Given the assumption 8 > 0 and the condition A > 0, we have:
U'(0)>0

Conclusion: Since U(0) = 0 and U’(0) > 0, the utility function is strictly increasing at the
origin. Thus, there exists some small € > 0 such that U(e) > U(0) = 0.

Since U (F) increases initially but eventually approaches —oo, it must achieve a global maximum
somewhere in the interval (0, o). The maximum cannot be at F' = 0 (because U(e€) > U(0))

and cannot be at infinity.

Therefore, there exists an optimal finite investment level F* € (0,c0). Being an interior
optimum of a differentiable function, F* must satisfy the first-order condition U’(F*) = 0,

which corresponds to Equation (47)

Note on concavity: The lemma mentions “Concavity for large F.” We can verify this by taking

the second derivative:
U"(F) =6(2B -k —6CF) — A(S + 6DF?)
As F — oo, the term —61D F? dominates. Since A, D > 0, U”(F) — —co, ensuring the function

is concave for sufficiently large F. O

2.5.1 Uniqueness under a parameter restriction

The cubic equation (47) can in general admit multiple positive roots. A simple sufficient

condition for uniqueness is that U is strictly concave on [0, o).

Compute the second derivative from Equation (47):
Urr(F:g,7) = 6 (2B = k) — 6CF) — A(g) (S + 6DF2) . (19)
Proposition 1 (Sufficient condition for uniqueness). If

6(2B(1) — k) < A(g)S(g.7), (20)

9



then Upp(F; g,7) <0 forall F > 0. Hence the optimal inflow F*(g, ) is unique.

Proof. Step 1: Compute the second derivative: We differentiate the first-order condition U (F)
with respect to F.

Up(F)= 6A +6(2B — k)F —30CF? — ASF — 2ADF>
N——

const
Differentiating term by term:

d d .. d d 3
— — —[30CF?] = —[ASF] —= —[2ADF
dF g 0T = gplASE] = 24D

=0(2B — k) — 60CF — AS — 6ADF?

Urpp(F) = —[0(2B - k) F]

Grouping the constant terms (independent of F) and the F-dependent terms:
Urr(F) = [0(2B — k) — AS] — (60CF + 6ADF?) 1)
Step 2: Sign analysis: We evaluate the sign of Upp(F) under the condition given in the

Proposition.

First, we analyze the constant term: the hypothesis of the proposition is:
0(2B — k) < AS
Rearranging this inequality, we get:
0(2B—k)—AS <0
Let Ko = 6(2B — k) — AS. Thus, Ky < 0.

Second, analyze the F-dependent terms: consider the term —(60CF +61DF?). From the model
definitions: i) @ > 0 (preference parameter), ii) 4 > 0 (risk aversion), iii) C = (1 —7)RJn. Since
crash parameters J,n > 0, we have C > 0, iv) D = (1 - T)2R2J277. Since J,n > 0, we have

D > 0, v) the investment level is positive, F > 0.

Therefore, for any F' > O:
60CF >0 and 6ADF*>0

This implies:
—(60CF +6ADF?) <0

10



Conclusion: Combining the terms for any F > 0:

Upp(F) = Ko +—(60CF +61DF?)
——
<0 <0

Urr(F) <0

Since the second derivative is strictly negative for all F > 0, the objective function U(F) is

strictly concave on the domain (0, o).

A strictly concave function defined on a convex set can have at most one global maximum.
Lemma 1 established that a maximum exists; strictly concavity ensures that this maximum is

unique. O

2.5.2 Closed-form solution of the cubic

Write Equation (47) as:
asF? + ayF? + a F +ay =0, (22)

with coefficients:

a3 =24(8)D(1), ax=360C(g,7), a1 =A(8)S5(g,7) - 0(2B(1) —«), ao=-0A(g, 7).

(23)
Note a3z > 0, a, > 0 and ag < 0 when A > 0.
Define the depressed-cubic transformation:
F=y-2 (24)
3aj
Substituting Equation (24) into Equation (22) yields:
y3+py+q:0, (25)
where ) 3 )
3aza) —a 2a> — 9azaraqy + 27a5ay
p=—s—2. gq=—2 . Sl (26)
3a; 21ay
The discriminant is:
A—(q)2+(p)3 27)
2 3/

Proposition 2 (Characterization of the real roots). The depressed cubic Equation (25) has:

* exactly one real root if A > 0;

11



e three distinct real roots if A < 0;

* multiple real roots if A = Q.

In all cases, any real root y maps to a real root F via Equation (24). Any optimal inflow must

be a nonnegative real root satisfying the second-order condition Upp(F) < 0.

Proof. Step 1: Reduction to depressed cubic: We apply the standard Tschirnhaus transformation

to eliminate the quadratic term (F2) from the general cubic equation. Let:

F=v-—-—= 28
y 345 (28)

Substituting this into the general cubic equation a3 F> + a2 F? + a1 F + ag = 0:

3 2
a a a
@(y—ﬁ) +a2(y—3—az3) +a1(y—i)+a0:0

Expanding the terms (algebraic verification): 1) The coefficient of y? is a3. To normalize, we
will divide the entire equation by a3 later. 2) The coefficient of y> becomes zero by design:

3(13(—3“723) +ay) =—ay+apy = 0.
After expansion and simplifying, we divide by a3 to obtain the monic form:
Y +py+g=0 (29)

where the coeflicients p and g are given by the standard reduction formulas:

3(13(21 - a2
p=—5— 2 (30)
3a3
. = 2a§ —9aszara; + 27a§a0 31
27a§

Step 2: Discriminant analysis: The nature of the roots of the depressed cubic equation y> +

py + g = 01is determined by its discriminant, defined as:

s=(3)+(5) @)

Based on the algebraic theory of cubic equations (Cardano’s method), the sign of A determines

the roots as follows:

1. Case A > 0: The formula for the roots involves the sum of two cube roots. One cube root

12



is real, and the other two involve complex numbers that do not cancel out to form real

numbers (except for the principal root).
* Result: One real root and two complex conjugate roots.
2. Case A < 0: Thisis the “casus irreducibilis.” The roots can be expressed trigonometrically.
* Result: Three distinct real roots.
3. Case A = 0: The roots are real, and there is multiplicity.

* If p = g = 0, there is one triple real root at y = 0.
» If p # 0, there is one single real root and one double real root.

* Result: Real roots with multiplicity.

Step 3: Mapping back to investment F: Since the coefficients ay, . . ., a3 are real, the translation
term 3“723 is real. Therefore: i) a real solution y corresponds uniquely to a real solution F =
a

Y = 34 ii) complex solutions y correspond to complex solutions F' (which are economically

meaningless).

Step 4: Optimality: The first-order condition Ur(F) = 0 is necessary but not sufficient for a
maximum. A valid candidate for the optimal investment F* must satisfy two additional phys-
ical/economic constraints: 1) Feasibility: F* > 0; 2) Maximality: the second-order condition
must hold, i.e., Upp(F*) < 0.

If A < 0, yielding three real roots, the global maximum is found by checking the utility level
U(F) at the feasible roots that satisfy the second-order condition, as well as checking the

boundary F = 0 (though Lemma 1 typically rules out F = 0if A > 0). O

When A > 0, the unique real root is:

* 3 4 3 4 * * as
= /-2 + VA + -5 - VA, F*=y" = —. 33
y \/ > > y 345 (33)
When A < 0, a convenient trigonometric representation is:
| p 1 3q 3 2rk
=2./-= - —|——-—1, k=0,1,2, 34
Vi 3 cos(3 arccos(zp p) 3 (34)

and Fy = yx — 3% One then picks the economically relevant Fj > 0 satisfying the SOC.

13



2.6 Risk premium, tail risk, and amplification
2.6.1 A ‘“‘risk-price” analogue

One can summarize incentives by a risk premium price p (mean per unit of risk). Here, a natural

analogue is:
px(F,8,7)
F,g,T) = ——————=. 35
p(F.8.7) ox(Fog.7) (35)
Using (16),
A(g,7) + B(1)F - C(g, ) F?
VS(g,7) + D(1)F? .

The numerator is the carry net of endogenous crash losses; the denominator is total risk (normal

p(F.g,7) = (36)

volatility plus jump risk that rises with inflows).

Lemma 2 (Endogenous tail risk lowers the risk price at high inflows). Fix (g, 7). IfC(g,7) >0
and D(7) > 0, then p(F,g,7) — —o0 as F — oco. Moreover, there exists F, > 0 such that
p(F, g, 7) is strictly decreasing for all F > F,,.

Proof. Part 1: Asymptotic behavior (limit): We examine the limit of the ratio as F — oo.
We divide both the numerator and the denominator by the highest power of F' present in the
denominator, which is VF> = F.

A+BF -CF* _F(%+B-CF)

p(F) =
VS + DF? F/%+D

Canceling F for F > O:

4+B-CF
p(F) =
% +D

Now, take the limit as ' — oo: 1) the numerator behaves as: 0 + B — co — —oo (since C > 0);
ii) the denominator behaves as: VO + D = VD (a positive constant, since D > 0). Thus:

—00
Flim p(F) =— =—-0

VD

This proves the first part of the lemma. Economically, the expected return declines quadratically
(due to crash probability 7F2), while volatility increases only linearly (square root of F2). The
crash drag eventually dominates.

Part 2: Monotonicity for large inflows: We calculate the first derivative of p(F) with respect to
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F using the quotient rule. Let N(F) = A + BF — CF? and G(F) = VS + DF2.

_ N'(F)G(F) - N(F)G'(F)

pAE) [G(F)]2

Calculate the components:

N'(F) = B-2CF
DF

d 1
G’(F) = d—F(S+DF2)1/2 = E(S_'_DFZ)—I/Z .2DF = m
VS +

Substitute these into the expression for p’(F):

_ 2 _ _ ~p2\__DF
(B-2CF)VS + DF? - (A+ BF - CF?) 2t
S+ DF?

p'(F) =

To determine the sign, we focus on the numerator of this fraction. We multiply the numerator
and denominator by VS + D F? to clear the fraction in the numerator term. The sign of p’(F) is

determined entirely by the sign of the resulting numerator, we call it N'(F):

N(F) = (B-2CF)(S+DF? — (A +BF - CF*)DF
= (BS + BDF? - 2CFS - 2CDF?) — (ADF + BDF? — CDF?)

Group terms by powers of F: i) F3 terms: —2CDF? — (-CDF?) = ~CDF?; ii) F? terms:
BDF? — BDF? = 0;iii) F! terms: —2CFS — ADF = —(2CS + AD)F; and iv) constant terms:
BS.

Thus, the numerator simplifies to a cubic polynomial:
N(F) =-CDF? - (2CS + AD)F + BS

Since C > 0 and D > 0, the coefficient of the leading term (F 3 is strictly negative (-CD < 0).

Therefore, as F — oo, N(F) — —oo. This implies that there exists some threshold Fp such that
forall F > F,, N(F) <O0.

Since the denominator of p’(F) is always positive, it follows that p’(F) < O for all F' > Fp. O

2.6.2 Tail risk measure

Define the tail event as the crash state C = 1. Conditional tail probability is simply:

T(F,g)=P(C=1|F,g) =n(F,g) =r(g) +nF>. (37)
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Proposition 3 (Inflow elasticity of crash (tail) probability). Define the tail-event probability (FX
crash probability) as

T(F,g) =P(C=1|F,g) =n(F,g) =nr(g) +nF?,

and define the inflow elasticity of tail risk as the log—log derivative

0logT (F,g)
err(F,g) = #-
Then )
2nF
F,9) = ————. 38
err(F,g) 7(2) + 1F? (33)

In particular, if inflows are large enough that the endogenous component dominates the baseline
term (nF* > 7(g)), then
err(F,g) — 2.

Equivalently, in that region the crash probability scales approximately like T(F,g) ~ nF?, so

a 1% increase in F raises tail risk by about 2%.

Proof. Step 1: Compute the marginal change in tail risk: First, we differentiate the tail proba-
bility function 7 (F, g) with respect to the inflow F. Treating g as a constant:
o7 (F,g) 0

oF  OF (ﬁ(g) " an)

Since 7(g) is constant with respect to F:

d7 (F,g)

—F——==0+2nF =2nF
OF n n

Step 2: Compute the elasticity: We substitute the derivative and the original function into the

definition of elasticity:

F 0T (F,g)
ET,F(F,g)=7.(F 5 oF
s _ = 2 oT _ )
Substituting 7~ = 7 + nF~ and ¢z = 2nF:
F
err(F,g) = 2@ +nF? (2nF)
Multiplying the numerator terms:
2nF?
err(F,g) = 7(2) + nF? (39)
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This establishes the main formula of the proposition.

Step 3: Analyze the limit (dominant endogenous risk): We examine the behavior of this elasticity

when the endogenous component of risk (7F2) becomes very large relative to the baseline risk

(7 (8))-
Assume nF? > 7(g). We can approximate the denominator:
7(g) + nF? ~ nF?

Substituting this into the elasticity formula:

2nF?

nF? =2

err(F,g) =

Alternatively, we can take the limit formally as F — oo (assuming the model holds for large F):

F? 2 2
lim €7 ¢ (F.,g) = lim T lim =21 i

F—)oo7T+77F2 _F—>oo%+n_0+7]_

Economic interpretation: An elasticity of 2 implies that a 1% increase in capital inflows leads
to approximately a 2% increase in the probability of a crash. This “convex” sensitivity arises

because the crash probability is a quadratic function of inflows. O

2.6.3 Amplification and multiple equilibria (fixed-point interpretation)

Equation (47) already embeds two opposing feedbacks: 1) carry amplification: if y > 0, inflows
raise expected appreciation, increasing expected carry (term BF); ii) fragility amplification:
inflows raise crash probability, lowering expected carry (term —CF?) and increasing risk (term
DF?). When the carry amplification dominates locally but fragility dominates globally, the
quartic objective can become non-concave, delivering multiple local extrema and thus multiple

candidate inflow “regimes”.

A crisp sufficient condition for possible multiplicity is that the objective is locally convex near
F=0:
Urrp(0;2,7) =0(2B(1) — k) — A(g)S(g,7) > O. (40)

This is the opposite of the uniqueness condition in Proposition 1.

Theorem 1 (Sudden-stop geometry via non-concavity). Suppose A(g,7) > 0 and Equation
(40) holds, while D(t) > 0 and A(g) > 0. Then U(F;g, ) is increasing at F = 0, locally

convex near 0, and eventually tends to —oco. Hence there exist parameter values for which
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U(F; g, 7) admits at least two critical points on (0, o), and therefore the FOC (47) can have
multiple positive roots. For such parameter values, small changes in (g, T) can move the global

maximizer discontinuously from a high-inflow root to a low-inflow root.

Proof. We analyze the geometry of the investor’s objective function U(F') to determine the

possibility of multiple equilibria. Recall the quartic objective function derived in Equation (17):

U(F) =0 (AF + BF?—CF3 - gFZ) - %FZ(S + DF?)
The first-order condition (FOC) is given by U’(F) = 0:

U'(F)=0A + [0(2B — ) — AS] F = 30CF? - 2ADF> 41)
The second derivative is:

U”(F) = [0(2B - k) — AS] = 60CF — 6ADF* (42)
We then analyze the behavior of the function and its slope at the starting point of investment,
F=0.
1. Slope (U’(0)): Evaluating the first derivative (Equation (41)) at F' = O:
U0)=0A+0-0-0=0A
Since the theorem assumes A > 0 (positive expected carry) and 6 > 0, we have:
U'(0)>0

This implies that the utility function is strictly increasing at the origin. The investor has an

incentive to start investing.

2. Curvature (U”(0)): Evaluating the second derivative (Equation (42)) at F = O:
U’(0)=02B—k) —AS-0-0=0(2B — k) — AS
The theorem explicitly assumes condition (40), which states that this term is positive. Therefore:
U”0) >0

This implies that the utility function is locally convex near zero.
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Economic interpretation: In this region, the “carry amplification” (the feedback where inflows
appreciate the currency and increase returns, driven by B) dominates the “fragility” and risk

aversion effects. The marginal utility of investing is increasing for small positions.

Step 2: Geometry at infinity (F — o0): We examine the tail behavior. From Lemma 1, we know
the term with the highest power of F in U(F) is —%F“. Since A > 0 and D > O:

lim U(F) = —o0

F—oo

Consequently, the derivative must eventually become negative:

lim U'(F) = -0

F—

Step 3: Intermediate geometry and multiplicity: We combine the findings: 1) the function starts
at U(0) = 0 with a positive slope (U’(0) > 0); ii) the slope is initially increasing (U” (0) > 0),
meaning the function is becoming steeper (convex); ii1) eventually, the function must turn around

and crash to —oo.

For a smooth function to transition from being increasing and convex (accelerating upwards)
to approaching —oo, it must undergo significant curvature changes: i) it must transition from

convex to concave (an inflection point); ii) it must reach a local maximum (where U’ = 0).

Under the specific condition where the convexity at the origin is strong enough, the function
develops a non-trivial “S-shape” (convex then concave) before declining. This geometry allows
for complex dynamics where the global maximum can shift discontinuously between a high-
inflow solution (on the far side of the hill) and a low-inflow solution (or corner solution) as

parameters change.

Thus, under condition (40), the standard uniqueness guarantee fails, and the objective function

admits the geometry necessary for multiple equilibria (sudden stops). O

Corollary 1 (Macroprudential wedges can remove multiplicity). Fix g. If T is increased so that
0(2B(t) — k) < A(g)S(g, 1) holds (as in Proposition 1), then the inflow optimum is unique and

the discontinuous switching described in Theorem 1 is ruled out.

Proof. Step 1: Link to global concavity: Assume the policy wedge 7 is set such that the condition
0(2B(t) — k) < A(g)S(g, 1) is satisfied. From the proof of Proposition 1, we know that this
condition implies:

Upp(F;8,7) <0 forall F >0

This means the investor’s objective function U(F) becomes globally strictly concave over the

entire domain of feasible inflows.
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Step 2: Uniqueness of the optimum: A strictly concave function defined on a convex set (the
non-negative real line [0, c0)) can have at most one global maximum. Since Lemma 1 ensures
that at least one maximum exists (provided A > 0), global strict concavity guarantees that this

maximum is unique.

Step 3: Ruling out discontinuous switching: Theorem 1 describes a scenario where small
changes in (g, 7) can move the global maximizer discontinuously. This behavior relies on the
existence of multiple local maxima separated by a local minimum (the “S-shape” geometry

arising from non-concavity).

By enforcing the condition in Step 1, the geometry of U(F) is restricted to be a single “hill”
(inverted U-shape). Specifically, 1) there is only one peak; ii) the location of this single peak,
F*(g,7), varies continuously with the parameters (g, 7) (by the Implicit Function Theorem

applied to the strictly concave FOC).

Therefore, the possibility of jumping between distinct roots (discontinuous switching) is elim-
inated. The macroprudential tax 7 successfully stabilizes the market by dampening the “carry
amplification” mechanism (represented by B(7)) sufficiently to ensure the risk-aversion forces
dominate. |

2.7 Comparative statics and policy predictions

This section records sharp derivatives. The key tool is the implicit function theorem applied to
the FOC (47).

Let
Y(F;g,7)=Up(F;g,7).

An interior optimum satisfies W(F*;g,7) = 0and Upp(F*; g,7) <O0.

2.7.1 Effect of the macroprudential wedge

Proposition 4 (Higher 7 lowers inflows and tail risk). Assume F*(g, 7) is an interior optimum
with Upp(F*; g,7) < 0. Then
OF* 0T (F*,g) -

ot <0, ot

0. (43)

Proof. Part 1: Effect on inflows (F*): We apply the Implicit Function Theorem to the condition
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Y(F*;g,7)=0:
or* W (F*g,71)

ot Wp(F*g.7)

(44)

Since the denominator Wy = Upr is strictly negative (by the SOC), the sign of % is the same
as the sign of ¥;. We must show that ¥, < 0.

Step 1.1: Structural form of the FOC: Recall the structure of the utility function terms. The
expected excess return depends on (1 — 7), while the variance depends on (1 — 7)2. We can
rewrite the FOC W(F) compactly by grouping the terms associated with the marginal return and

marginal risk.

Let M(F) be the gross marginal return component (before tax and funding costs) and V},,4,¢ (F)

be the marginal contribution to variance. The FOC can be expressed as:
Y(F, 1) =0[(1-1)M(F) = R* = kF] = A(1 = 1)*Vyarg (F) = 0 (45)

where M(F) contains terms like R(1 + u.), 2Ry F, etc; Viparg (F) contains terms like S and

DF?; R* is the funding cost and kF is the marginal balance sheet cost.

Step 1.2: Differentiating w.r.t. T: Compute the partial derivative of ¥ with respect to 7:

P
Y= (9(1 ~ 2)YM(F) - 6R* - xF — A(1 - T)2fvmarg(F))

= 6(_M(F)) -4 2(1 - T)(_l)(Vmarg(F)
= —OM(F) +2A(1 = 7)Viparg (F)

Step 1.3: Substitution from FOC: From the FOC equation (45), we can solve for the risk term
/1(1 - T)(Vmarg(F):

A1 =17)*Vyarg(F) = 0 [(1 = T)M(F) — R* — kF]
9

= A1 = 1)Vyare(F) = T-+ [(1-1)M(F) - R* — kF]

Substitute this back into the expression for ¥, :

WY, = —OM(F) +2 % [(1-7)M(F) - R* - kF]
& [—(1 = )M(F) +2(1 = T)M(F) — 2R* — 2«F]
& [(1 - T)M(F) = 2R* — 2«F]

Step 1.4: Determining the sign: We can substitute (1 — 7) M(F) using the FOC again. Since
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Y(F)=0:
(1-7)M(F)=R"+«kF + g(l - T)Z(Vma,g(F)

Risk Premium>0

Substitute this into the bracket for ¥ :

[(R* + kF + Risk Premium) — 2R* — 2« F|

1-71

0
=7 [Risk Premium — R* — kF]
-7

In standard financial models, the equilibrium risk premium (which is of the order of a few
percentage points) is significantly smaller than the gross funding cost R* (whichis 1 + r* > 1).
Therefore:

Risk Premium — R* < 0

Since kF > 0, the entire term in the bracket is strictly negative.
Y. <0

Thus, from the Implicit Function Theorem:

OFF W (9
PR

Part 2: Effect on tail risk (7" ): Recall from Proposition 3 that the crash probability is given by:
T(F.g) =7(g) +nF°

Differentiating with respect to 7 using the chain rule:

oT _ 0T OF"
or OF ot

We know: 1) g—(; = 2nF > 0 (tail risk increases with inflows); 2) % < 0 (from Part 1).

Therefore:
0T

EL

A higher macroprudential wedge reduces the equilibrium inflow, which directly reduces the

0

endogenous probability of a crash. O
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2.8 Global cycle comparative statics

To connect to global financial cycle, impose standard sign restrictions:

Assumption 3 (Global cycle monotonicities). For higher g (easier global conditions):
dR™(g) _ 0, d(g) _ 0, dz(g) _ 0, dos(8) _ 0. due(g)

> 0.
dg dg dg dg dg

Proposition 5 (Easier global conditions raise inflows). Under Assumption 3, and at any interior

optimum with Upp(F*; g, 7) < 0, we have:

OF*
g

>0 for parameter regions where baseline carry A(g, T) risesin g. (46)

Proof. We define W(F; g, 1) as the First-Order Condition (FOC) for the investor’s optimization
problem. From Equation (47):

W(F,g) =0 (A(g) + 2B - OF ~3C(2)F?) - A(g) (S(@)F +2DF*) =0 (47)
(We suppress 7 as it is held fixed for this proposition).

An interior optimum F* satisfies W(F™, g) = 0 and the Second-Order Condition (SOC) ¥r < 0.

We invoke Assumption 3 (Global cycle monotonicities), which states that for higher g (easier
conditions): i) funding cost falls: R; < 05 1i) risk aversion falls: A, < 05 iii) baseline crash
probability falls: 7, < 0; iv) baseline volatility falls or is constant: (O'EZ)g < 0; v) baseline

appreciation rises or is constant: u, ¢ > 0.

We apply the Implicit Function Theorem to the condition W(F*, g) = 0:

oF _ Y, (F'.g)
dg  Wr(F.g)

(48)

Since the denominator Wr is strictly negative (by the SOC), the sign of aa—i is the same as the
sign of W,. We must show that ¥, > 0.

Step 1: Expand ¥, : Differentiate the FOC expression in Equation (47) with respect to g:

¥, = e(a—A—sta—C

oS ;0D
g og

o1
— | ==(SF+2DF3 + A —F+4+2F3
) [é’g( ¥ )+ (g)(é’g ¥ 0g

We now analyze the derivatives of the coefficients A, C, S, D with respect to g, based on their
definitions (Equations (11)-(15)): 1) Coefficient D: D = (1 — T)2R2J27]. Since n and J are
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constant parameters (fragility is structural), D does not depend on g.

oD

—~ -0
og

2. Coefficient C: C = (1 — 7)RJn. Similarly, C is constant with respect to g.

oC
@ = 0
3. Coefficient A: A(g) = (1 —7)R(1 + u.(g) —J7(g)) — R*(g).

0A
@Z(I—T)R(

O, Jﬁﬁ OR*
dg  dg) Ig

Using Assumption 3: 1) %—gg > (O (appreciation rises); ii) —J % > 0 (crash risk falls, so expected
return rises); iii) —%’: > 0 (funding cost falls). 4. Coefficient S: S(g) = (1 — 7)2R*(c2(g) +

JP7(8))-

oS do? on

P _(1-2r | Yy 8

dg dg ag
Using Assumption 3: 1) aagg : < 0 (volatility falls); ii) g—z < 0 (crash probability falls). Thus,
95 < ()
0g :

Step 2: Evaluate the sign of W,: Substitute these results back into the expression for W,:

dA 92 N
¥, = 6— —30F*(0)— —— (SF+2DF’)-A(g)(-—F+0
8 o 0 0
§ —— 0g — g
— 0 — >0 —
>0 <0 <0

implifying the signs: i) Term 1: 6A, > 0 (Expected return channel); ii) Term 2: —A,(Risk) > 0
(Since A, is negative, —A, is positive. (lower risk aversion boosts demand); iii) Term 3:

—AS F > 0 (Since S, is negative, —AS, is positive. Lower baseline variance boosts demand).

Since all non-zero terms are positive:
¥, >0

Conclusion: Applying the Implicit Function Theorem:

R )

= - >0
0g Yr (-)

Thus, easier global financial conditions unambiguously increase equilibrium capital inflows. O
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3 Conclusion

This paper studies a minimal carry-trade environment in which the probability of an FX crash
is endogenous to the scale of portfolio inflows. The key reduced-form assumption is that the
crash probability increases convexly with the inflow position, 7(F,g) = 7(g) + nF?, so tail
risk is not only a state variable but also an outcome of equilibrium positioning. This single
nonlinearity changes the structure of the standard mean—variance portfolio problem in a sharp
way: under the rare-crash approximation, the investor’s objective becomes quartic in F, and
the first-order condition is cubic. The model therefore delivers closed-form characterizations of
candidate inflow levels, transparent uniqueness conditions, and a simple mapping from global

financial conditions into both the level of inflows and the implied tail probability.

Two results are worth emphasizing. First, because crash risk rises convexly in F, the model
distinguishes between periods in which inflows mainly move average returns (through carry and
expected appreciation) and periods in which incremental inflows mainly move tail outcomes.
In the latter region, the inflow elasticity of tail probability is high: when the endogenous
component dominates the baseline term, tail probability scales approximately like F> and the
log—log elasticity approaches two. Put differently, once the system is far enough into the high-
inflow region, small additional inflows can disproportionately raise crash risk even if average

returns continue to look attractive.

Second, the same feedback can generate regime-type behavior. When the “carry amplification”
channel is strong for small positions but fragility dominates for large positions, the quartic
objective can be non-concave and the global maximizer can switch discontinuously between a
high-inflow and a low-inflow solution. In this sense, a “sudden stop” can appear as a change
in which stationary point is globally preferred, rather than as an imposed occasionally binding
constraint. The analytical advantage of this setup is that the conditions for uniqueness versus
multiplicity can be stated directly in terms of a few composite coefficients, and the knife-edge

between continuous and discontinuous adjustments is explicit.

The model suggests that policy is most valuable when it prevents the economy from drifting
into the region where tail risk becomes steep in inflows. This leads to three practical recom-
mendations. First, use simple, position-based tools during inflow booms. A macroprudential
wedge on foreigners’ after-cost return, 7, reduces equilibrium inflows and therefore reduces the
endogenous crash probability. The mechanism is direct: the wedge lowers the private marginal
gain from building positions while leaving the fragility channel intact, so the chosen F* falls.
In environments where high-frequency gross inflows are driven by global funding conditions,
such a wedge is a blunt but robust way to limit the buildup of crash exposure without needing to

precisely identify every micro source of fragility.
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Second, make the stance countercyclical in global conditions and local positioning. Because
easier global conditions raise the desired inflow position, a natural implementation is a rule-like
countercyclical design: tighten the wedge (or margins) when global funding is cheap and risk
appetite is high, and relax it when global conditions tighten and private inflows retreat. In
practice, this points to conditioning the policy stance on a small set of observables that proxy
for the model’s state variables and positioning: global risk and funding indicators, nonresident
local-currency bond holdings, rapid growth in currency-hedged carry positions, and measures
of short-term external funding exposure. The goal is not to fine-tune average inflows, but to

avoid entering the region where marginal inflows mainly buy tail risk.

Third, stabilize the regime structure, not only the mean level of inflows. When non-concavity
is present, the policy problem is not simply “too much” inflow; it is that the system may sit near
a boundary where small shocks change which stationary point is globally optimal. In that case,
a policy that restores global concavity is valuable because it removes a source of discontinuous
switching. In the model, raising v dampens the carry amplification channel and can restore
uniqueness. An operational reading is that macroprudential policy should be evaluated partly
by whether it reduces the likelihood of regime-like jumps in positioning, not just by whether it

lowers average inflows in normal times.

Finally, the margin-style instrument in the appendix points to a complementary approach. A
VaR-type constraint caps positions precisely when risk rises quickly with F, which is exactly
the high-inflow region where endogenous jump risk steepens the variance. This makes margin
tools naturally state dependent even when they are set by a simple rule (for example, a fixed

confidence level and a time-varying margin tightness).

The framework is intentionally partial equilibrium. Two extensions are immediate. First, one
can endogenize local-currency returns (or bond prices) through market clearing, adding a price
channel that may strengthen the amplification mechanism. Second, one can introduce domestic
borrowers and a welfare criterion to evaluate the trade-off between the benefits of openness and
the externality created by position-dependent crash risk. Both extensions would allow a full
welfare-based design of macroprudential rules while preserving the main message of the paper:
when tail risk is increasing in positions, managing the cycle in risk-taking and leverage is at least

as important as managing the cycle in average flows.
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A A VaR-style Margin Constraint (An Alternative Policy Instrument)

Some macroprudential toolkits operate through margins rather than direct taxes. A simple way

to capture this is a Value-at-Risk constraint on the position:
VaR,(FX) < mW, (A.1)

where a € (0, 1) is the tail confidence level; m € (0, 1) is an exogenous margin tightness set by

the regulator (lower m is tighter); W > 0 is investor wealth (or intermediation capacity).

Under the (common) normal-approximation VaR,(FX) =~ z, F ox(F, g,7) with z, > 0 the

Gaussian quantile, the constraint becomes:

Fox(F,g,1) < z

(A.2)

a

Using the approximation oy (F, g, 7) = VS + DF? from (16), Equation (A.2) implies an explicit
upper bound:

mW
Za

—S +/S2 + 4D (mW [z,)?

2
) = F< FVaR(g,T, m) = \/ D . (A3)

F2(s+DF) < (
The constrained optimum is then
F*V®R(g 1 m) = min {F*(g, 7), Fvar(g, 7, m)} .

Since dFy,r/0m > 0, tighter margins (lower m) weakly reduce inflows even when the uncon-
strained solution would be large. This instrument is particularly effective in the high-inflow

regime where jump risk makes ox steep in F'.
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